5% de descuento en todos los libros solicitados por la web

200 and More NMR Experiments: A Practical Course

135
128.25
Chapter 1: The NMR Spectrometer.

1.1 Components of an NMR Spectrometer.

1.1.1 The Magnet.

1.1.2 The Spectrometer Cabinet.

1.1.3 The Computer.

1.1.4 Maintenance.

1.2 Tuning a Probe-Head.

1.3 The Lock Channel.

1.4 The Art of Shimming.

1.4.1 The Shim Gradients.

1.4.2 The Shimming Procedure.

1.4.3 Gradient Shimming.

Chapter 2: Determination of Pulse-Duration.

Exp. 2.1: Determination of the 90 1H Transmitter Pulse-Duration.

Exp. 2.2: Determination of the 90 13C Transmitter Pulse-Duration.

Exp. 2.3: Determination of the 90 1H Decoupler Pulse-Duration.

Exp. 2.4: The 90 1H Pulse with Inverse Spectrometer Configuration.

Exp. 2.5: The 90 13C Decoupler Pulse with Inverse Configuration.

Exp. 2.6: Composite Pulses.

Exp. 2.7: Radiation Damping.

Exp. 2.8: Pulse and Receiver Phases.

Exp. 2.9: Determination of Radiofrequency Power.

Chapter 3: Routine NMR Spectroscopy and Standard Tests.

Exp. 3.1: The Standard 1H NMR Experiment.

Exp. 3.2: The Standard 13C NMR Experiment.

Exp. 3.3: The Application of Window Functions.

Exp. 3.4: Computer-Aided Spectral Analysis.

Exp. 3.5: Line Shape Test for 1H NMR Spectroscopy.

Exp. 3.6: Resolution Test for 1H NMR Spectroscopy.

Exp. 3.7: Sensitivity Test for 1H NMR Spectroscopy.

Exp. 3.8: Line Shape Test for 13C NMR Spectroscopy.

Exp. 3.9: ASTM Sensitivity Test for 13C NMR Spectroscopy.

Exp. 3.10: Sensitivity Test for 13C NMR Spectroscopy.

Exp. 3.11: Quadrature Image Test.

Exp. 3.12: Dynamic Range Test for Signal Amplitudes.

Exp. 3.13: 13 Phase Stability Test.

Exp. 3.14: Radiofrequency Field Homogeneity.

Chapter 4: Decoupling Techniques.

Exp. 4.1: Decoupler Calibration for Homonuclear Decoupling.

Exp. 4.2: Decoupler Calibration for Heteronuclear Decoupling.

Exp. 4.3: Low-Power Calibration for Heteronuclear Decoupling.

Exp. 4.4: Homonuclear Decoupling.

Exp. 4.5: Homonuclear Decoupling at Two Frequencies.

Exp. 4.6: The Homonuclear SPT Experiment.

Exp. 4.7: The Heteronuclear SPT Experiment.

Exp. 4.8: The Basic Homonuclear NOE Difference Experiment.

Exp. 4.9: 1D Nuclear Overhauser Difference Spectroscopy.

Exp. 4.10: 1D NOE Spectroscopy with Multiple Selective Irradiation.

Exp. 4.11: 1H Off-Resonance Decoupled 13C NMR Spectra.

Exp. 4.12: The Gated 1H-Decoupling Technique.

Exp. 4.13: The Inverse Gated 1H-Decoupling Technique.

Exp. 4.14: 1H Single-Frequency Decoupling of 13C NMR Spectra.

Exp. 4.15: 1H Low-Power Decoupling of 13C NMR Spectra.

Exp. 4.16: Measurement of the Heteronuclear Overhauser Effect.

Chapter 5: Dynamic NMR Spectroscopy.

Exp. 5.1: Low-Temperature Calibration Using Methanol.

Exp. 5.2: High-Temperature Calibration Using 1,2-Ethanediol.

Exp. 5.3: Dynamic 1H NMR Spectroscopy on Dimethylformamide.

Exp. 5.4: The Saturation Transfer Experiment.

Exp. 5.5: Measurement of the Rotating-Frame Relaxation Time T1?.

Chapter 6: 1D Multipulse Sequences.

Exp. 6.1: Measurement of the Spin-Lattice Relaxation Time T1.

Exp. 6.2: Measurement of the Spin-Spin Relaxation Time T2.

Exp. 6.3: 13C NMR Spectra with SEFT.

Exp. 6.4: 13C NMR Spectra with APT.

Exp. 6.5: The Basic INEPT Technique.

Exp. 6.6: INEPT+.

Exp. 6.7: Refocused INEPT.

Exp. 6.8: Reverse INEPT.

Exp. 6.9: DEPT-135.

Exp. 6.10: Editing 13C NMR Spectra Using DEPT.

Exp. 6.11: DEPTQ.

Exp. 6.12: Multiplicity Determination Using PENDANT.

Exp. 6.13: 1D-INADEQUATE.

Exp. 6.14: The BIRD Filter.

Exp. 6.15: TANGO.

Exp. 6.16: The Heteronuclear Double-Quantum Filter.

Exp. 6.17: Purging with a Spin-Lock Pulse.

Exp. 6.18: Water Suppression by Presaturation.

Exp. 6.19: Water Suppression by the Jump-and-Return Method.

Chapter 7: NMR Spectroscopy with Selective Pulses.

Exp. 7.1: Determination of a Shaped 90 1H Transmitter Pulse.

Exp. 7.2: Determination of a Shaped 90 1H Decoupler Pulse.

Exp. 7.3: Determination of a Shaped 90 13C Decoupler Pulse.

Exp. 7.4: Selective Excitation Using DANTE.

Exp. 7.5: SELCOSY.

Exp. 7.6: SELINCOR: Selective Inverse H,C Correlation via 1J(C,H).

Exp. 7.7: SELINQUATE.

Exp. 7.8: Selective TOCSY.

Exp. 7.9: INAPT.

Exp. 7.10: Determination of Long-Range C,H Coupling Constants.

Exp. 7.11: SELRESOLV.

Exp. 7.12: SERF.

Chapter 8: Auxiliary Reagents, Quantitative Determinations, and Reaction Mechanisms.

Exp. 8.1: Signal Separation Using a Lanthanide Shift Reagent.

Exp. 8.2: Signal Separation of Enantiomers Using a Chiral Shift Reagent.

Exp. 8.3: Signal Separation of Enantiomers Using a Chiral Solvating Agent.

Exp. 8.4: Determination of Enantiomeric Purity with Pirkle's Reagent.

Exp. 8.5: Determination of Enantiomeric Purity by 31P NMR.

Exp. 8.6: Determination of Absolute Configuration by the Advanced

Mosher Method.

Exp. 8.7: Aromatic Solvent-Induced Shift (ASIS).

Exp. 8.8: NMR Spectroscopy of OH Protons and H/D Exchange.

Exp. 8.9: Water Suppression Using an Exchange Reagent.

Exp. 8.10: Isotope Effects on Chemical Shielding.

Exp. 8.11: pKa Determination by 13C NMR.

Exp. 8.12: Determination of Association Constants Ka.

Exp. 8.13: Saturation Transfer Difference NMR.

Exp. 8.14: The Relaxation Reagent Cr(acac)3.

Exp. 8.15: Determination of Paramagnetic Susceptibility by NMR.

Exp. 8.16: 1H and 13C NMR of Paramagnetic Compounds.

Exp. 8.17: The CIDNP Effect.

Exp. 8.18: Quantitative 1H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka.

Exp. 8.19: Quantitative 13C NMR Spectroscopy with Inverse Gated 1H-Decoupling.

Exp. 8.20: NMR Using Liquid-Crystal Solvents.

Chapter 9: Heteronuclear NMR Spectroscopy.

Exp. 9.1: 1H-Decoupled 15N NMR Spectra Using DEPT.

Exp. 9.2: 1H-Coupled 15N NMR Spectra Using DEPT.

Exp. 9.3: 19F NMR Spectroscopy.

Exp. 9.4: 29Si NMR Spectroscopy Using DEPT.

Exp. 9.5: 29Si NMR Spectroscopy Using Spin-Lock Polarization.

Exp. 9.6: 119Sn NMR Spectroscopy.

Exp. 9.7: 2H NMR Spectroscopy.

Exp. 9.8: 11B NMR Spectroscopy.

Exp. 9.9: 17O NMR Spectroscopy Using RIDE.

Exp. 9.10: 47/49Ti NMR Spectroscopy Using ARING.

Chapter 10: The Second Dimension.

Exp. 10.1: 2D J-Resolved 1H NMR Spectroscopy.

Exp. 10.2: 2D J-Resolved 13C NMR Spectroscopy.

Exp. 10.3: The Basic H,H-COSY Experiment.

Exp. 10.4: Long-Range COSY.

Exp. 10.5: Phase-Sensitive COSY.

Exp. 10.6: Phase-Sensitive COSY-45.

Exp. 10.7: E.COSY.

Exp. 10.8: Double-Quantum-Filtered COSY with Presaturation.

Exp. 10.9: Fully Coupled C,H Correlation (FUCOUP).

Exp. 10.10: C,H-Correlation by Polarization Transfer (HETCOR).

Exp. 10.11: Long-Range C,H-Correlation by Polarization Transfer.

Exp. 10.12: C,H Correlation via Long-Range Couplings (COLOC).

Exp. 10.13: The Basic HMQC Experiment.

Exp. 10.14: Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling.

Exp. 10.15: Poor Man's Gradient HMQC.

Exp. 10.16: Phase-Sensitive HMBC with BIRD Filter.

Exp. 10.17: The Basic HSQC Experiment.

Exp. 10.18: The HOHAHA or TOCSY Experiment.

Exp. 10.19: HETLOC.

Exp. 10.20: The NOESY Experiment.

Exp. 10.21: The CAMELSPIN or ROESY Experiment.

Exp. 10.22: The HOESY Experiment.

Exp. 10.23: 2D-INADEQUATE.

Exp. 10.24: The EXSY Experiment.

Exp. 10.25: X,Y-Correlation.

Chapter 11: 1D NMR Spectroscopy with Pulsed Field Gradients.

Exp. 11.1: Calibration of Pulsed Field Gradients.

Exp. 11.2: Gradient Pre-emphasis.

Exp. 11.3: Gradient Amplifier Test.

Exp. 11.4: Determination of Pulsed Field Gradient Ring-Down Delays.

Exp. 11.5: The Pulsed Field Gradient Spin-Echo Experiment.

Exp. 11.6: Excitation Pattern of Selective Pulses.

Exp. 11.7: The Gradient Heteronuclear Double-Quantum Filter.

Exp. 11.8: The Gradient zz-Filter.

Exp. 11.9: The Gradient-Selected Dual Step Low-Pass Filter.

Exp. 11.10: gs-SELCOSY.

Exp. 11.11: gs-SELTOCSY.

Exp. 11.12: DPFGSE-NOE.

Exp. 11.13: gs-SELINCOR.

Exp. 11.14: a/ -SELINCOR-TOCSY.

Exp. 11.15: GRECCO.

Exp. 11.16: WATERGATE.

Exp. 11.17: Water Suppression by Excitation Sculpting.

Exp. 11.18: Solvent Suppression Using WET.

Exp. 11.19: DOSY.

Exp. 11.20: INEPT-DOSY.

Exp. 11.21: DOSY-HMQC.

Chapter 12: 2D NMR Spectroscopy With Field Gradients.

Exp. 12.1: gs-COSY.

Exp. 12.2: Constant-Time COSY.

Exp. 12.3: Phase-Sensitive gs-DQF-COSY.

Exp. 12.4: gs-HMQC.

Exp. 12.5: gs-HMBC.

Exp. 12.6: ACCORD-HMBC.

Exp. 12.7: HMSC.

Exp. 12.8: Phase-Sensititive gs-HSQC with Sensitivity Enhancement.

Exp. 12.9: Edited HSQC with Sensitivity Enhancement.

Exp. 12.10: HSQC with Adiabatic Pulses for High-Field Instruments.

Exp. 12.11: gs-TOCSY.

Exp. 12.12: gs-HMQC-TOCSY.

Exp. 12.13: gs-HETLOC.

Exp. 12.14: gs-J-Resolved HMBC.

Exp. 12.15: 2Q-HMBC.

Exp. 12.16: 1H-Detected 2D INEPT-INADEQUATE.

Exp. 12.17: 1,1-ADEQUATE.

Exp. 12.18: 1,n-ADEQUATE.

Exp. 12.19: gs-NOESY.

Exp. 12.20: gs-HSQC-NOESY.

Exp. 12.21: gs-HOESY.

Exp. 12.22: 1H,15N Correlation with gs-HMQC.

Chapter 13: The Third Dimension.

Exp. 13.1: 3D HMQC-COSY.

Exp. 13.2: 3D gs-HSQC-TOCSY.

Exp. 13.3: 3D H,C,P-Correlation.

Exp. 13.4: 3D HMBC.

Chapter 14: Solid-State NMR Spectroscopy.

Exp. 14.1: Shimming Solid-State Probe-Heads.

Exp. 14.2: Adjusting the Magic Angle.

Exp. 14.3: Hartmann-Hahn Matching.

Exp. 14.4: The Basic CP/MAS Experiment.

Exp. 14.5: TOSS.

Exp. 14.6: SELTICS.

Exp. 14.7: Connectivity Determination in the Solid State.

Exp. 14.8: REDOR.

Exp. 14.9: High-Resolution Magic-Angle Spinning.

Chapter 15: Protein NMR.

Exp. 15.1: Pulse Determination for Protein NMR.

Exp. 15.2: HN-HSQC.

Exp. 15.3: HC-HSQC.

Exp. 15.4: MUSIC.

Exp. 15.5: HN-Correlation using TROSY.

Exp. 15.6: HN-TOCSY-HSQC.

Exp. 15.7: HNCA.

Exp. 15.8: HN(CO)CA.

Exp. 15.9: HNCO.

Exp. 15.10: HN(CA)CO.

Exp. 15.11: HCACO.

Exp. 15.12: HCCH-TOCSY.

Exp. 15.13: CBCANH.

Exp. 15.14: CBCA(CO)NH.

Exp. 15.15: HBHA(CBCACO)NH.

Exp. 15.16: HN(CA)NNH.

Exp. 15.17: HN-NOESY-HSQC.

Exp. 15.18: HC-NOESY-HSQC.

Exp. 15.19: 3D HCN-NOESY.

Exp. 15.20: HNCA-J.

Appendix 1: Pulse Programs.

Appendix 2: Instrument Dialects.

Appendix 3: Classification of Experiments.

Appendix 4: Elementary Product Operator Formalism Rules.

Appendix 5: Chemical Shift and Spin-Coupling Data for Ethyl Crotonate and Strychnine.

Glossary and Index
Autores
ISBN
978-3-527-31067-8
EAN
9783527310678
Editor
John Wiley & Sons, Ltd.
Stock
NO
Idioma
Inglés
Nivel
Profesional
Formato
Encuadernado
Tapa Dura
Páginas
854
Largo
-
Ancho
-
Peso
-
Edición
Fecha de edición
15-06-2004
Año de edición
2004
Nº de ediciones
1
Colección
-
Nº de colección
-